Neuropeptide-Driven Cross-Modal Plasticity following Sensory Loss in Caenorhabditis elegans
نویسندگان
چکیده
Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross-modal signaling, by showing how activity-dependent neuropeptide signaling leads to specific cross-modal plastic changes in neural circuit connectivity, enhancing sensory performance.
منابع مشابه
The foundations of cross-modal plasticity
Cross-modal plasticity is a striking adaptive feature of the brain, whereby the loss of one sensory modality induces cortical reorganization that leads to enhanced sensory performance in remaining modalities. Much is known about the macroscopic modifications in the brain that underly cross-modal plasticity and the associated changes in sensory performance. In contrast there is relatively scant ...
متن کاملOxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in Caenorhabditis elegans.
The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. C. elegans oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX se...
متن کاملVasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans.
Vasopressin- and oxytocin-related neuropeptides are key regulators of animal physiology, including water balance and reproduction. Although these neuropeptides also modulate social behavior and cognition in mammals, the mechanism for influencing behavioral plasticity and the evolutionary origin of these effects are not well understood. Here, we present a functional vasopressin- and oxytocin-lik...
متن کاملSelect Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster
The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family...
متن کاملCortical GABAergic Interneurons in Cross-Modal Plasticity following Early Blindness
Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be resp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2016